Prominent role of KCa3.1 in endothelium-derived hyperpolarizing factor-type dilations and conducted responses in the microcirculation in vivo.

نویسندگان

  • Stephanie E Wölfle
  • Volker J Schmidt
  • Joachim Hoyer
  • Ralf Köhler
  • Cor de Wit
چکیده

AIMS The activation of endothelial Ca2+-dependent K+-channels, KCa3.1 (IKCa), and KCa2.3 (SKCa) has been proposed to be a prerequisite for endothelial hyperpolarization, which subsequently hyperpolarizes and relaxes smooth muscle [endothelium-derived hyperpolarizing factor (EDHF)-type dilation] and initiates conducted dilations. Although EDHF is the main mediator of acetylcholine (ACh)-induced dilation in the murine skeletal microcirculation, the differential contribution of KCa3.1 and KCa2.3 is not known. METHODS AND RESULTS We assessed agonist-induced and conducted dilations as well as endothelial hyperpolarization in the cremaster microcirculation of KCa3.1-deficient (KCa3.1-/-) and wild-type mice (wt) in vivo after blockade of NO and prostaglandins. Compared with wt, resting tone was enhanced by approximately 25% in arterioles of KCa3.1-/- mice. ACh-induced dilations in KCa3.1-/- mice were virtually abolished at low and intermediate concentrations and a remaining dilation at 10 micromol/L ACh was abrogated by blockade of KCa2.3 with UCL1684. Sodium nitroprusside- and adenosine-induced dilations were similar in wt and KCa3.1-/-. Focal application of ACh induced dilations at the local site in both genotypes, which conducted along the vessel. However, the amplitude of the dilation decreased with distance only in KCa3.1-/-. Blockade of KCa2.3 in wt did not affect conducted dilations. A KCa3.1 opener induced a conducting dilation in wt but not in KCa3.1-/-. Membrane potential recordings in vivo demonstrated endothelial hyperpolarization in response to ACh in both genotypes; however, the hyperpolarization was severely impaired in KCa3.1-/- (Delta membrane potential: -3 +/- 1 vs. -14 +/- 2 mV). CONCLUSION We conclude that KCa3.1 is of major importance for endothelial hyperpolarization and EDHF-type responses in skeletal muscle arterioles, and its deficiency is not compensated by KCa2.3. Sole activation of KCa3.1 is capable of initiating conducted responses, and KCa3.1 may contribute to the propagation of the signal, although its presence is not mandatory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impaired Endothelium-Derived Hyperpolarizing Factor–Mediated Dilations and Increased Blood Pressure in Mice Deficient of the Intermediate-Conductance Ca -Activated K Channel

The endothelium plays a key role in the control of vascular tone and alteration in endothelial cell function contributes to several cardiovascular disease states. Endothelium-dependent dilation is mediated by NO, prostacyclin, and an endothelium-derived hyperpolarizing factor (EDHF). EDHF signaling is thought to be initiated by activation of endothelial Ca -activated K channels (KCa), leading t...

متن کامل

Naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a new activator of KCa2 and KCa3.1 potassium channels, potentiates the endothelium-derived hyperpolarizing factor response and lowers blood pressure.

Small-conductance (KCa2.1-2.3) and intermediate-conductance (KCa3.1) calcium-activated K(+) channels are critically involved in modulating calcium-signaling cascades and membrane potential in both excitable and nonexcitable cells. Activators of these channels constitute useful pharmacological tools and potential new drugs for the treatment of ataxia, epilepsy, and hypertension. Here, we used th...

متن کامل

Myoendothelial coupling is not prominent in arterioles within the mouse cremaster microcirculation in vivo.

A smooth muscle hyperpolarization is essential for endothelium-dependent hyperpolarizing factor-mediated dilations. It is debated whether the hyperpolarization is induced by a factor (endothelium-derived hyperpolarizing factor) and/or is attributable to direct current transfer from the endothelium via myoendothelial gap junctions. Here, we measured membrane potential in endothelial cells (EC) a...

متن کامل

Endothelium-derived hyperpolarizing factor in coronary microcirculation: responses to arachidonic acid.

In coronary resistance vessels, endothelium-derived hyperpolarizing factor (EDHF) plays an important role in endothelium-dependent vasodilation. EDHF has been proposed to be formed through cytochrome P-450 monooxygenase metabolism of arachidonic acid (AA). Our hypothesis was that AA-induced coronary microvascular dilation is mediated in part through a cytochrome P-450 pathway. The canine corona...

متن کامل

Different pathways with distinct properties conduct dilations in the microcirculation in vivo.

AIMS Conduction of vasomotor signals along the vessel coordinates the behaviour of vascular cells and is attributed to the spread of hyperpolarizations through gap junctions. Intriguingly, conducted dilations encompass larger distances than can be expected by passive electrotonic spread. Because distances are quite distinct for different dilators, we hypothesized that separate pathways with dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cardiovascular research

دوره 82 3  شماره 

صفحات  -

تاریخ انتشار 2009